Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica).

نویسندگان

  • Conny Hättasch
  • Henryk Flachowsky
  • Danuta Kapturska
  • Magda-Viola Hanke
چکیده

Flower development in apple (Malus domestica Borkh.) extends over two consecutive seasons. During the first season, most shoot apical meristems change to reproductive growth and initiate flowers. After winter dormancy, flower development continues during the second season and ends with anthesis in the spring. To determine the beginning of the transition to reproductive growth at the molecular level and to identify genes involved in this critical phase of flower development, we examined transcript levels of the putative flowering genes MdCOL1, MdCOL2, MdFT, MdSOC1, MdMADS2, MdMADS5, MdTFL1-1 and MdTFL1-2 in vegetative terminal buds of the apple cultivar Pinova during the first season by quantitative real-time PCR. Transcript levels of these genes peaked at the end of April during blooming of coexisting floral buds. Subsequently, there was a large increase in transcription, which started on May 22 for AFL2 and MdMADS2, followed by MdFT and AFL1 one week later. We propose that the increased transcription at the end of May marks the beginning of flower induction. Transcript levels of MdSOC1, MdTFL1-1 and MdTFL1-2 increased at the end of June, suggesting that these genes are involved in flower initiation, which follows flower induction. In contrast, MdMADS5 transcription was too weak to be quantified, and the transcript levels of MdCOL1 and MdCOL2 showed no detectable trends during the study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

Transcription Profiles Reveal Sugar and Hormone Signaling Pathways Mediating Flower Induction in Apple (Malus domestica Borkh.).

Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that ...

متن کامل

Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica

GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evoluti...

متن کامل

Shoot bending promotes flower bud formation by miRNA‐mediated regulation in apple (Malus domestica Borkh.)

Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower i...

متن کامل

Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple.

A MADS-box gene, MdMADS2, was isolated from the apple (Malus x domestica Borkh.) var Fuji and its developmental expression pattern was studied during flower development. MdMADS2 shares a high degree of amino acid sequence identity with the SQUAMOSA subfamily of genes. RNA blot analysis showed that MdMADS2 is transcribed through all stages of flower development, and its transcription was seen in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2008